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Cartan Connection and Defects in Bravais Lattices 
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Received April 11, 1990 

The geometrical approach to a field theory of defects in crystalline solids 
including both dislocations and intrinsic point defects is developed in the 
framework of Cartan atfine differential geometry. A clear distinction between 
linear and affine connection is made. The discussion is restricted to the basic 
kinematic level. 

1. INTRODUCTION 

That differential geometry, in particular affine differential geometry, 
provides the natural language to approach the so-called many-defects prob- 
lem in crystalline solids has been widely recognized (Kr6ner, t981) since 
the pioneering work of  Kondo (1952) and Bilby et al. (1955), which dis- 
covered the identity between dislocation density, as defined by Nye (1953), 
and Cartan (1923) torsion. 

Besides dislocations, which are line defects, we can identify in a 
monoatomic crystal other elementary defects, such as intrinsic point defects 
(self-interstitials and vacancies). The interactions between dislocations and 
point defects are important in explaining many properties of crystals. This 
implies, as noted by KrSner (1988), that a theory of dislocations which 
does not include a description of  point defects cannot be complete. We 
would like to have a theory of  defects to describe such elementary 
phenomena as the creation of  vacancies and interstitials by the nonconserva- 
tive motion (climb) of dislocations. Such a theory should take into account 
that dislocations and point defects are of  a quite different nature. A point 
defect is a perturbation of  a crystal that can be completely enclosed in a 
small sphere of  a few atomic diameters in dimension, while the presence 
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of a dislocation can be detected by the closure failure of a Burger circuit 
drawn at an arbitrary distance from the singular line, a property which can 
be restated in the modern language of the homotopic classification of defects 
(Rogula, 1976; Toulouse and K16man, 1976; K16man et aL, 1977) by saying 
that a dislocation is a topologically stable defect, while a point defect is not. 

It is the purpose of  this paper to present some developments of the 
geometrical approach to a field theory of  defects in crystalline solids includ- 
ing both dislocations and intrinsic point defects. The discussion will be 
mainly restricted to the basic kinematic level, namely the introduction of a 
convenient set of so-called internal variables describing the internal 
mechanical state of the crystal as determinated by the presence of defects. 

2. CRYSTALS AS O R D E R E D  MEDIA 

In order to talk about defects, one must first explain what one means 
by a crystal without defects, namely a perfect crystal. By a perfect crystal 
(monoatomic) I mean a nonuniform thermodynamic phase in equilibrium 
characterized by a triply periodic density distribution. By contrast, a fluid 
in equilibrium, in the absence of external fields, is characterized by a uniform 
density distribution. One can describe this situation by means of  an order 
parameter in the sense of  Landau, namely, a quasithermodynamic variable 
whose value is zero in the symmetric (fluid) phase and nonzero in the 
crystalline phase. The complex amplitudes of the Fourier components of 
the periodic density distribution can be used to this purpose. It is, however, 
traditional to represent schematically a (monoatomic) perfect crystal by 
means of  a Bravais lattice. So I found it natural to take as order parameter 
manifold the space A of all Bravais lattices, which I suggest calling the 
Rogula space because it was introduced by Rogula (1976) in the topological 
classification of defects. Any Bravais lattice is represented by a single point 
of A and a continuous lattice deformation by a path in A. 

From a field-theoretic point of  view, the choice of A as the field 
manifold, namely the choice of a Bravais lattice as a local value of  the 
order parameter, is admittedly odd. It is not difficult, however, to provide 
a more traditional, analytical representation of the order parameter space. 
Indeed, a Bravais lattice is completely determined by a point P ~ E(3)  of 
the three-dimensional Euclidean space and three basic lattice vectors all, 
d2, d3, so one can identify a Bravais lattice with an affine moving frame 
consisting of  the origin P and the triad of  basic vectors. 

In any region of the material body corresponding to a "good crystal," 
one can associate to each point a value of the order parameter so that each 
point which is not in the core of  a defect is labeled with a triad of  basic 
vectors and a position vector which fixes the origin of the moving frame. 
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This procedure is reminiscent of that of constructing the tangent bundle of 
a manifold, with the difference that in that case the origin has an absolute 
meaning (only homogeneous transformations are allowed), while here the 
origin can be translated (affine tangent space). It is with these considerations 
in mind that I consider the Cartan affine connection (Cartan, 1923) instead 
of the more familiar linear connection traditionally used to describe crystal 
defects. A precise definition of the affine connection will be given in the 
next section; here I want to sketch briefly the principle of the topological 
classification. 

The identification of the order parameter of a crystalline phase with 
an affine moving frame is satisfactory from the local point of view, but 
the manifold of all possible moving frames is significantly different from 
the Rogula space of Bravais lattices. Indeed, given a frame, a unique 
Bravais lattice is identified, conversely to each Bravais lattice there corre- 
spond infinitely many affine frames (Figure 1). Neither the origin nor the 
triad of basic vectors is determined by the lattice. More specifically, the 
origin can be any point of the lattice and the basic vectors are determined 
apart from a unimodular linear transformation represented by an integral 
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Fig. 1. 
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matrix. This situation, although formally more complex, is conceptually 
quite the analog of that found, e.g., in a nematic liquid crystal, to quote 
the simplest example, where the average orientation of the axis of the 
molecules is locally described by means of  a unit vector ~, but the two 
opposite orientations of ~ have to be identified. As a consequence, the order 
parameter  space, which is a two-sphere for ~, becomes the projective plane 
with different global topological properties. This in turn implies the possible 
existence of  disclinations as stable topological defects. 

In a crystal we have exactly the same situation: a moving affine frame 
may be used to identify a local coordinate system in the order parameter 
space, but to describe correctly the global topological structure of  the Rogula 
space one must take into account the identification of different points 
imposed by the multivaluedness of the representation. By analogy with the 
nematic case, it is not difficult to see that it is just this identification procedure 
that leads to nontrivial topological properties and as a consequence to the 
possible existence of topologically stable line defects in the form of  disloca- 
tions (nonuniqueness of  the origin of the frame), disclinations (rotational 
arbitrariness of the basic vectors), and also, as pointed out by Rogula, line 
defects of  shear type associated with lattice arbitrariness of the basic vectors 
not described by rotations. As mentioned before, an unambiguous result of  
the homotopic  classification of  defects is that intrinsic point defects, in the 
form of  vacancies or interstitials, are not topologically stable. 

3. L A T r l C E  DEFORMATION AND AFFINE CONNECTION 

In a crystal we can distinguish between two types of deformations, a 
nondissipative one, which is usually called elastic, and a dissipative one 
called plastic (Kr/Sner, 1981). 

At the purely kinematic level the elastic deformation is characterized 
by the fact that neighboring particles remain neighboring particles and the 
lattice is dragged along into the new particle configuration as schematically 
illustrated in Figure 2; it can therefore also be called lattice deformation. 
On the contrary, no change in the lattice structure occurs as a consequence 
of  a plastic deformation (Figure 3), which can be obtained by adding or 
removing matter so that neighboring particles do not remain neighbors. 
Because such a deformation can be obtained by processes of slip and climb 
of  dislocations as schematically illustrated in Figure 4, it can also be called 
dislocation deformation. Here the term deformation is used in a more general 
meaning than usual to include local rotations and translations. The specific 
term distortion is frequently used in a similar sense. 

The existence of these two types of deformations is characteristic of 
crystalline solids. It is related to the rigidity of  crystals, namely to the fact 
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Fig. 2. Elastic deformation. 

that the free energy is minimized when symmetry is broken perfectly in 
phase throughout the sample. The analogy between crystal rigidity and the 
possibility of  superflow in 4He and superconductors was mentioned by 
London (1961). 

Let us consider now a monoatomic crystal in the ideal reference state 
at 0 K. Introduce a lattice distortion by means of  a vector displacement field 

8 
a ( x ' , x 2 ,  x 3) = u ~ - -  8X ~ 

where the x ~ (Greek indices) are space coordinates which one may con- 
veniently assume to be Cartesian and orthogonal. As a consequence, a 
material point originally at P ( x  1, x2, x 3) goes into P '  with coordinates 
x ~ +  u ~. The coordinates of P '  will be identical to those of  P in a new 
coordinate system with origin given by 

~---a 
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Fig. 3. Plastic deformation. 

and new axes (see Figure 5), with unit  vectors given by 

ei = a x  i a x '  J a x  e =- B 7  a x "  

These last two equat ions  define local affine frames at each point  o f  the 
crystal in the distorted state which are crystal lographic.  The frames at two 

al b/ cl 

Fig. 4. Taylor illustration of plastic deformation due to dislocation motion. 
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Fig. 5. 

neighboring points are related by 

0 
d eo = d u  ~' - -  

Ox ~ 

0 
d e i  = d B 7  - -  

Ox '~ 

o~ J J Introducing the matrix B~ inverse to Bi (Bi B~ = 8~), one gets 

d e o  = d u  ~' B ~ e ~  =- wJe~ 

d e i =  d B 7  B ~ e ~  =- J w i e j  

which are, in Cartan notation, the basic equations defining an affine connec- 
tion. The assignment of the vector-valued differential form (w j) and of  the 
matrix-valued form w[ completely describes the distortion process. It is 
necessary at this point to give a precise definition of an affine connection 
as introduced by Cartan. Admittedly there is some confusion in the literature 
about the meaning of  the term "affine connection." Traditionally, the terms 
"linear connection" and "affine connection" have been used interchange- 
ably. We need instead a clear distinction. Briefly, an affine connection on 
a manifold M is a connection on the bundle of affine frames over M, while 
a linear connection is a connection on the bundles of linear frames over M 
(Kobayashi, 1963). 

In the theory of the linear connection the tangent spaces T p ( M )  at 
each point P of a manifold M are obviously regarded as vector spaces. To 
define an affine connection, one must regard each tangent space as an affine 
space, namely as a space of  points. The difference between a vector space 
and an affine space is that in the vector space the origin is fixed, and has 
an absolute meaning, while in the affine space it can be varied. Therefore 
an affine frame at a point P of a manifold is a frame of the tangent affine 
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space at P, namely a point 0 together with a basis of  the associated tangent 
space at P. The point 0 is the origin o f  the frame. An affine connection 
[called generalized affine connection by Kobayashi  and Nomizu (Kobayashi ,  
1963)] on M is an infinitesimal connection on the principal fiber bundle of  
affine frames on M. An affine connection in a manifold M defines, for each 
curve P( t ) ,  0 ~  t -  1, on M the parallel displacement of  the affine tangent 
space along the curve. By considering two infinitesimally neighboring points, 
one gets the basic equations (5) defining an affine connection in Cartan 
notation. 

A linear connection on M can be regarded as a special kind of  affine 
connection where w ~ = O  ~ and 0 i are the dual forms to the ei, namely 
O~(e j )=  8~. 

The torsion r and curvature f~ of an affine connection are defined by 

r =- D(wie i )  =- (dwi)ei  - w i ^ dei = ( d w i +  w) A wJ)ei 

h J 12; =- O (  w] e~ ) =- ( dw~ + w~ ^ w, )ej  =- 12, ej 

One can easily verify that in the case of  the lattice distortion defined 
above, both torsion and curvature vanish. This is due to the fact that the 
elastic distortion is realized by means of  a displacement vector field u. This 
is analogous to a potential superflow in 4He ( v s = g r a d  ~ and therefore 

rot vs = 0). 
However,  as in helium, in the presence of  many vortices, one can 

describe the situation assuming the existence of  the superflow, at least below 
a certain critical velocity, namely the existence of  vs but with rot v~ # 0, so 
that vs is no longer the gradient of  the phase of  the condensate wave 
function, so in crystals one can imagine more general lattice distortion 
processes where one can still define an infinitesimal connection but without 
assuming the existence of a vector displacement field u. The simplest 
generalization is given by the equations 

O 
d eo = fl '~ Ox" 

0 
dei  = dB7 - -  

O X  '~ 

where/3 ~ cannot be written as du '~, but we still assume 

B~ = 67 +/37 

so that we have a definite relationship between change in the basic vectors 
(rotation and strain) and shifting of the origin. The above pair of  equations 
can also be written in Caf tan form with w j = 13~BJa and w~ = dB7 B~. With 



Caftan Connection and Defects in Bravais Lattices 1215 

these expressions for the connection forms, it is easily verified that the 
torsion is different from zero and it is given by 

r = d B  ~ B ~ e i  = d ~  " -  
6 x  ~ 

while the curvature f~ vanishes ( t e l e p a r a l l e l i s m ) .  

The nonzero value of the torsion is a measure of the dislocation density 
in the same sense that the nonzero value of rot v, in superfluids is a measure 
of  the density of  vortex lines, while the vanishing value of the curvature 
corresponds to the fact that, even in the presence of a large number of 
dislocations, while long-range positional correlation is lost, there still 
remains long-range orientational correlation. 

A further consequence of the fact that f~ = 0 is the conservation law 
(Bianchi identity) 

D r = f ~ s i  A w i = O  

This last equation shows that in the description given so far dislocations 
have an autonomous life: there is no possibility to describe their interaction 
either with the elastic field (phonons) or with point defects. The next step 
will be to explore the metric properties of  a crystal. 

4. DIFFERENTIAL GEOMETRY OF INTRINSIC POINT DEFECTS 

As I have already mentioned, intrinsic point defects, such as vacancies 
and interstitials, are not topologically stable defects. Technically, this is due 
to the fact that the second homotopy group of the order parameter space 
of  a crystal vanishes. This remark, however, does not help too much in 
trying to understand how to describe point defects, apart from the obvious 
conclusion that if they are not revealed by an observer who knows only 
topology, one must introduce further geometrical structures. 

But point defects differ from dislocations in another important respect 
besides topological stability: they can be in thermal equilibrium. This means 
that, in the absence of  dislocations or grain boundaries, one does not need 
to introduce extra variables to describe their presence in a crystal, because 
their average number is completely determined, in local equilibrium states, 
by the value of  thermodynamic variables (temperature and pressure). The 
situation changes drastically in the presence of dislocations or grain bound- 
aries, because of  the interaction between these singularities and point 
defects. Figure 6 illustrates, for example, the creation of  a vacancy and an 
interstitial through the interaction with the crystal surface. In these non- 
equilibrium situations one needs to introduce extra variables describing the 
internal mechanical state of  the crystal due to the presence of point defects 
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and their interaction with dislocations. It is therefore natural to try to extend 
to point defects the geometrical picture already available to describe disloca- 
tions. In this respect there is a suggestion by K_r6ner that point defects 
represent disturbances in the metric structure of the crystal. 

In order to understand how this can happen, it is convenient to 
introduce an internal observer. This internal observer has no information 
on how to measure distances between atomic positions from the external, 
Euclidean space, in which the crystal is embedded. He has, however, all 
the notions of  affine geometry and so he can move parallel to himself along 
lattice lines. He can measure distances along lattice lines by counting atomic 
steps, so that vacant sites will not be counted, while interstitials on lattice 
lines will be counted as regular atomic positions. He will not be able, 
however, to compare distances along different lattice lines. Nonetheless, 
because the atomic fraction of point defects, even at the melting point, is 
relatively small, it is natural to conceive that, sooner or later, the internal 
observer will discover the possibility of comparing distances along different 
lattice lines by means of  Pythagoras's theorem. Indeed, with reference to a 
plane simple square lattice, as in Figure 7 the internal observer will find 
that the sum of the squares of the atomic steps along orthogonal directions 
has a constant ratio to the square of the atomic step along the diagonal. 
Although we can imagine that the observer had at the beginning the same 
religious repulsion toward ~ as did Pythagoras and his school, the validity 
of  Pythagoras's theorem would finally be accepted. However, in a "bad"  
region of the crystal, where vacancies or self-interstitials are present along 
lattice lines, the internal observer will find deviations from the validity of 
Pythagoras's theorem. As these deviations can be detected by making a 
closed contour along lattice lines (see Figure 7), it is natural to look for a 
one-form to describe the presence of point defects. 
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Fig. 7. A simple square lattice with vacancies. 

The internal observer decides to measure distances between atomic 
positions as far as possible in agreement with the external, Euclidean 
observer, namely by putting 

gi.1 (ei, el)  ~ /3 ~ = = Bi  B j ~ , ~  = Bi  B j  (1) 

Then the 1-form 

Q,j  = dg, j - (de,, e j )  - (e,, de j)  (2) 

vanishes if there are no point defects, because one can compare  distances 
along different directions. This remains true even in the presence of  disloca- 
tions because 

de,  = wJ~ej = B~ d B T e j  (3) 

The simplest generalization of this connection law to allow for the 
presence of  point defects (Q,j ~ 0) is 

de, = (wBT' + dB'~) a__.y_ (w6• + B J dBT')ej  (4) 
Ox - 

This implies, according to equations (1) and (2), 

QiJ = - 2 w g i j  (5) 

It is interesting to observe that with the new connection law (4), dr  (the 
covariant exterior derivative of  the torsion) no longer vanishes, because the 
curvature is not zero: 

dde,  = f~Jiej = dw ei (6) 
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